Wastewater-based surveillance as an early warning tool to monitor infectious diseases at community level

Information Session – 27 June 2023
Agenda

<table>
<thead>
<tr>
<th>Topic</th>
<th>Presenters</th>
</tr>
</thead>
</table>
| 1 Opening remarks | Peter Sands
Executive Director, The Global Fund to Fight AIDS, Tuberculosis and Malaria |
| 2 Regional perspectives on environmental surveillance through wastewater-based surveillance | Yenew Kebede Tebeje
Head, Laboratory Systems and Network Division and Acting Head, Division of Surveillance and Disease Intelligence, Africa CDC |
| 3 Phase I: COVID-19 wastewater-based surveillance implementation | Noah Hull
Laboratory Technical Manager, APHL |
| 4 Updates | Daniel Abera
Team Lead, Environmental Health Research Team, MOH/EPHI, Ethiopia
Leonard Kingwara
Head National Genomics and Molecular Surveillance Laboratory, MOH/NPHI, Kenya
Natalia Ismael
MOH/NIS, Mozambique |
| 5 Phase II: Using NGS for multi-pathogen wastewater-based surveillance | Noah Hull
Laboratory Technical Manager, APHL |
| 6 Q&A | |
| 7 Closing remarks | Shunsuke Mabuchi
Head of RSSH, TAP, The Global Fund to Fight AIDS, Tuberculosis and Malaria |
APHL Project Stellar: Wastewater-based Surveillance

Information Session
27 June 2023
Value of Testing Wastewater (WWBS)

- Near-real-time information on disease prevalence
- High sensitivity to detect mild and asymptomatic cases
- Provides public health with early evidence for action
- Cost-effective means to survey transmission in entire communities
APHL Project Stellar Objectives

- Support the development of testing capacity for SARS-CoV-2 in wastewater
- Technical assistance for validation of collection and testing protocol
- Technical assistance to improve data management and electronic test reporting system, including transfer from Laboratory Information Management Systems to epidemiology partners
- Support the use of data from WWBS surveys to complement case-based surveillance and monitor in-country trends
- Support and implement next-generation sequencing (NGS) of wastewater for SARS-CoV-2 and other pathogens of public health concern (e.g., AMR, VHF, pan-respiratory, etc.)
Ethiopia Case Study

Daniel Abera, PI

Ethiopian Public Health Institute

27 June 2023
Project Timeline and Implementation

<table>
<thead>
<tr>
<th>Phase and Timeline</th>
<th>Major activities</th>
<th>Accomplishments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I:</td>
<td>May – June 2022
A assess laboratory readiness</td>
<td>Tools developed, assessment of laboratory capability and capacity strengths, weaknesses, risks</td>
</tr>
<tr>
<td>Phase II:</td>
<td>July - January 2023
Strengthen lab capacity</td>
<td>Contract agreement and Stakeholders' engagement</td>
</tr>
<tr>
<td></td>
<td>• Develop protocol, work plans, SOPs, budget and timelines.</td>
<td>All completed/ IRB certified protocol</td>
</tr>
<tr>
<td></td>
<td>• Establish twining and training of staff</td>
<td>Staff capacity built</td>
</tr>
<tr>
<td></td>
<td>• Procurement of equipment and supplies</td>
<td>Supplies procured for pilot testing</td>
</tr>
<tr>
<td>Phase III:</td>
<td>Feb 2023 – to date
Testing and result reporting:</td>
<td>Sample site assessment and selection</td>
</tr>
<tr>
<td></td>
<td>• Samples collection and test validation</td>
<td>Completed</td>
</tr>
<tr>
<td></td>
<td>• Surveillance testing and report results</td>
<td>Ongoing</td>
</tr>
<tr>
<td></td>
<td>• LIS and data management system</td>
<td>Ongoing</td>
</tr>
<tr>
<td></td>
<td>• Genomic sequencing</td>
<td>Not started</td>
</tr>
</tbody>
</table>
Methods and Study Areas

Study Site: Addis Ababa
- 3 sites that represented different sub-cities and treatment technologies, were selected based on population served, flow rate, and/or suitability for the intended purpose.

Sampling design: Longitudinal design:
- Wastewater influent samples collected three times a week per site for a period of 8-9 months
- Sample size: 300
Sample Collection Sites - Population data

1) Kality Wastewater Treatment Plant (WTP)
 • A centralized and older plant in Ethiopia.
 • Estimated population size currently served could reach 2,000,000, mostly living in the northwestern part of Addis Ababa

2) Mikililand Waste Stabilization Pond
 • It serves nearly 4,634 houses with an estimated population of 24,000 in ‘Condominium’

3) Bulbula Wastewater Treatment Plant
 • It serves nearly an estimated population of 34,000 living in ‘Condominium’

Notes: Population size is received from Addis Ababa Water and Sewerage Authority.
Ethiopia: Sample Collection and Transportation

Installation of SWAB at WTP

Collection of SWAB after 24 hrs

Sample Transportation to EPHI Lab

Squeezing SWAB at EPHI Lab
Wastewater-based Samples Tested for SARS-CoV-2

Test results, February - June 2023

- High rate of SARS-CoV-2 detection suggests active and subclinical cases circulating in the community
- Further expansion and active surveillance and monitoring of trends needed
- There is a need to develop a strategy to integrate with the case-based surveillance
Project Stellar: Pilot of wastewater as a surveillance tool in Kenya

27 June 2023

Leonard Kingwara, PhD
National Laboratory Services
MoH Kenya
Challenges and Interventions

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unavailability of required supplies in country and delay in procurement process</td>
<td>Purchased and imported from Kenya</td>
</tr>
<tr>
<td>Limited budget for NGS supplies for pilot and future of WWBS</td>
<td>Pending-NGS supplies to be procured by Principal Recipient; Awaiting confirmation from PR.</td>
</tr>
<tr>
<td>Limited budget for personnel cost for NGS implementation for this pilot</td>
<td>Discussion ongoing with PR and EPHI to address the gap</td>
</tr>
<tr>
<td>Unclear lead time/status for procurement delivery of NGS supplies</td>
<td>Continue to follow up with the PR and request GF advocacy on our behalf</td>
</tr>
<tr>
<td>Expansion of WWBS is a priority but constrained by limited resources</td>
<td>MOH/EPHI will address in GC-7 application and/or resource leverage</td>
</tr>
</tbody>
</table>
Lessons Learned

• Joint planning and coordination with surveillance and epidemiology units is paramount in ensuring success and sustainability
• Strong partnership and close working relationship with EPHI and APHL were critical for the implementation of the project
• Building local capacity through twinning with US-based institution
• Establishing TWG and engagement with key stakeholders
• Leveraging and use of existing in-country C19RM resources increased efficiency and cost-effectiveness
• The need to address procurement and supply chain system
• Allocation of sufficient resources for the expansion plan, including NGS
Wastewater-Based Surveillance Pilot Study Implementation

- NPHL began the WW pilot study in April 2022, bringing together stakeholders to create a workplan for implementation.
- Sampling and testing began in December 2022 at two collections sites in Nairobi.
- Sample collection and detection
 - Samples collected: 98
 - Positivity rate: 80.6%
- Twinning between NGMSL and Wisconsin lab
 - Sample collection, testing and analysis methodology

What’s Next...
- Study expansion from 2 to 17 sites
- Scale up of community testing
- WWBS sample sequencing (to include other pathogens of interest)
Wastewater-based Surveillance Results from the Pilot Sites

Trends in SARS-COV2 ORF1AB Gene in Wastewater in Nairobi

% positivity

Sample collection date

- KAMUKUNJI
- MATHARE
Laboratory Information System (LIS) Policy Changes: Pending Final Approval

This framework will help evaluate and choose the right LIS solutions systematically. It also provides a clear set of steps for implementation. It includes guidelines for defining strategic indicators and goals, determining data sources, and collecting information to make informed decisions.
Proposed Public Heath Response

- MoH Kenya is proposing to use WWBS data to scale up the use of Covid 19 of rapid test kit at the facilities/community level.
- A draft document has been produced which aims to outline the process of implementing public health responses from data on wastewater-based epidemiological surveillance of SARS CoV2 in Kenya with the aim of interrupting transmission and detecting any spike within the population.

1. Detect Spike of COVID-19 cases
2. Analyze data in real time (where/why) using community meta-data
3. Target COVID-19 testing and collection of more meta-data
4. Interrupt further transmission
1 Identify
 Identify and characterise *pathogen of interest* infections within the community by rapid deployment of RTK or PCR at community levels

2 Investigate
 - Conduct phylogenetic analysis for all newly identified cases using phylogenetic analysis
 - Investigate for *program gaps and root causes* contributing to new infections
 - Audit routine data for *program gaps* contributing to new infections.

 Summarize investigation findings.

 Identify *service needs*, report findings to local service provider (facility staff or community providers)

3 Respond
 Develop *response action plan* to address service gaps at health facilities or in the local community.

 Aggregate findings across multiple sites/communities.

 Identify *widespread services gaps*, report findings to program.

4 Review
 Return to site or community to *review response action plans*. Close investigation and document outcomes.

 Work with stakeholders to address *program need*.

 Local response

 Sub-national response

 National response

 - Review *service gaps* that require policy intervention.
 - Review *broad epidemiologic patterns* of new infections.
 - Provide *policy guidance* and resource *allocation* to improve COVID-19 response.

 - **Facility**
 Work with site staff to implement response action plan.
 - **Community Partner**
 Partner with local stakeholders to address service gaps.
 - **Review**
 Review action plans with response team. Continue to ensure service needs are met.
Lessons Learned from the Project Stellar Implementation:

• Scale up the implementation of wastewater-based surveillance in all 47 counties in Kenya to help monitor pathogens of concerns in wastewater to detect outbreaks early and provide a more comprehensive understanding of disease transmission.

• **WWBS enhanced collaboration between the lab and DDSR.** Translates to policy decision-making within the program from data generated. WWBS included as an Early Warning System for DDSR

• **Optimized data transmission and interoperability** with reduced patient identifier duplication and transcription errors allowing for longitudinal review of patient results.

• Established national ToTs to **support LIS to sustain and track its usage.**
Great Team and Motivated Staff

Great Leadership from Management and collaboration with MoH disease surveillance

Excellent Teamwork
The use of NGS for Waste Waster Surveillance in Mozambique: Way Forward

Instituto Nacional de Saúde (INS)
Nalia Ismael
Head of the Biotechnology Laboratory, INS
Surveillance of SARS-CoV-2 in Wastewater

Objective of current Pilot
Validate the method of detection and quantification of SARS-CoV-2 from wastewater in 4 sites

Hotel Gloria
Influent WWTP
Zimpeto
Marginal Maputo

March 21st Sample collection
4 sampling sites
2 samples/site/week

To Date:
113 Samples collected
91 Tested
Sample Collection and Data Sharing

DASHBOARD (developed)

113 Samples collected
91 Tested

Wastewater Surveillance

Total de amostras registadas
- Amostras Registadas
- Amostras Testadas

Hotel Gloria: 20
Infúlene: 23
Marginal: 24
Zímpeto: 21

Total de amostras testadas (Positividade)
- Positivos
- Negativos

Hotel Gloria: 4
Infúlene: 9
Marginal: 7
Zímpeto: 6

INSTITUTO NACIONAL DE SAÚDE
NGS Implementation: Project Stellar

Overview

• Implement NGS testing for WWBS
• Detect and monitor genetic changes in SARS-CoV-2 with Illumina COVIDSeq Assay
 • Look for novel mutations that may confer virulence and immune-evasion
• Watch for and act to impede emerging health threats such as antimicrobial resistance

Implementation

• Assess laboratory needs to implement NGS
• Receive technical assistance for wet-bench and dry-bench trainings
• Data analysis using Terra.Bio bioinformatics tool
• Procurement of supplies and reagents to be done by the Principal Recipient (PR)
• Pandemic preparedness using targeted panels from Illumina
Benefits of NGS with WWBS

- For limited settings such as Mozambique it is cost effective.
- Control the effectiveness of vaccines for diseases such as Polio.
- Detection of genetic profiles of other respiratory viruses beyond COVID in schools.
- High levels of inappropriate antibiotic use at the community level monitor AMR.
- Exp Cholera Outbreak Monitor the spread in communities.
- Because of climate changes the spread and transmission arboviruses need to tracked.
- Monitor the spread in communities.
Public Health Laboratories Network and NGS Sequencing Capacity Created During the Pandemic
Road Map for Implementation of Integrated Genomic Surveillance in Mozambique

- **2023**
 - Conduct workshop for integrated genomic surveillance
 - Develop a 5-year strategic plan
 - Advocate for and raise awareness of the value of genomic surveillance with policymakers to bring genomics into national disease control strategies
 - Strengthen current surveillance programs to integrate genomics into their systems
 - Address the vision, mission and goals of genomic surveillance in Mozambique
 - Define the priority pathogens (eg High burden, emerging and re-emerging diseases)
 - Implement a best-fitted system to prevent, detect and rapidly respond to outbreaks (ww, one health)
 - Deliver contextualized and sustainable systems that integrates other pathogens (standards samples and data collection system)
 - Develop genomics and bioinformatics capacity for other pathogens beyond covid-19
 - Create and strengthen a network of genomics laboratories within Mozambique

- **2023-2024**
 - Capacity Building and Implementation

- **2024-2025**
 - Enhance data sharing with other stakeholders
 - Establish a dashboard to visualize genomics data in real time
 - Make use of genomics routine in surveillance practice
Future of WWBS
Noah Hull
Future of WWBS

• Future use of WW will be driven by country and MoH needs

• *Dynamic* field with evaluation by pathogen taking place now

• Expansion of WW sites within each of the countries
 • Actionable public health data – expanded testing +/- public health messaging

• Targeted WWBS:
 • Aircraft (blue water)
 • Communal living facilities
 • One Health: livestock sites and wet markets
Future of WWBS – Other Select Pathogens

<table>
<thead>
<tr>
<th>Agent</th>
<th>Urine</th>
<th>Feces</th>
<th>Sewage</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enteric bacteria + AMR (V. cholerae)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Chahal et al. (2016)</td>
</tr>
<tr>
<td>Enteroviruses</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Maier et al. (2000); Poyry et al. (1994); Hovi et al. (1997)</td>
</tr>
<tr>
<td>Hep A</td>
<td>Rare</td>
<td>Yes</td>
<td>Yes</td>
<td>Alter et al. (1977); Bancroft et al. (1977); Arvanitidou et al. (1998)</td>
</tr>
<tr>
<td>Hep B</td>
<td>Rare</td>
<td>Yes</td>
<td>Yes</td>
<td>Dienstag et al. (1971); Alter et al. (1977); Bancroft et al. (1977); Arvanitidou et al. (1998)</td>
</tr>
<tr>
<td>HIV</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Levy (1989); Yolken et al. (1991)</td>
</tr>
<tr>
<td>Human poliovirus</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Jorba et al. (2017); Grassly et al. (2009); Nandy et al. (2016)</td>
</tr>
<tr>
<td>Mycobacterium tuberculosis</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Mtwtwa et al. (2022)</td>
</tr>
<tr>
<td>Nipah virus</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Chadha et al. (2006); Chua et al., (2002)</td>
</tr>
<tr>
<td>Rabies</td>
<td>Yes</td>
<td>No</td>
<td>?</td>
<td>Wacharapluesadee and Hemachudha (2002)</td>
</tr>
<tr>
<td>Viral encephalitis</td>
<td>Yes</td>
<td>Yes</td>
<td>?</td>
<td>Mathur et al. (1995)</td>
</tr>
</tbody>
</table>
WWBS Expansion and Sustainability

• There is great enthusiasm from laboratory personnel and MOHs to implement WWBS and continue expansion to additional sites, NGS, and other pathogens.

• We would like to suggest The Global Fund consider alternative funding strategies that can better enable TA providers and laboratories to procure needed reagents and to appropriately scale up staffing as needed.

• We believe that this alternative funding strategy will ensure both sustainability and better funding absorption by directly providing the TA providers and labs the resources needed to implement/expand WWBS successfully.
Thank you!

• WWBS *is* the future of public health surveillance

• Labs in ~14 months have gone from ideation to sampling and testing
 • Wanting and have expanded the number of sites
 • Implemented public health actions
 • Prepared and eager to implement WWBS NGS testing

• As a leader in laboratory system strengthening, APHL remains committed to ensuring that WWBS is implemented to its full potential and looks forward to the possibility of expanding our work through strong partnerships with TGF, Africa CDC, and Country MoHs/Labs.
Thank you!